Экстремум - Definition. Was ist Экстремум
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Экстремум - definition

Точка экстремума; Точки экстремума; Глобальный минимум; Локальный минимум; Точка локального минимума; Точка локального максимума; Точка глобального минимума; Точка глобального максимума; Глобальный максимум; Экстремумы; Локальный экстремум; Локальный максимум
  • +}}, нуль производной без экстремума — ╳. Видно, что остальные нули производной соответствуют точкам экстремума функции.

Экстремум         
(от лат. extremum - крайнее)

значение непрерывной функции f (x), являющееся или максимумом, или минимумом. Точнее: непрерывная в точке х0 функция f (x) имеет в x0 максимум (минимум), если существует окрестность (x0 + δ, x0 - δ) этой точки, содержащаяся в области определения f (x), и такая, что во всех точках этой окрестности выполняется неравенство f (x0), f (x) [соответственно, f (x0) ≤ f (x)]. Если при этом существует такая окрестность, что в ней f (x0) > f (x) [или f (x0) << f (x)] при х x0, то говорят о строгом, или собственном, максимуме (минимуме), в противном случае - о нестрогом, или несобственном, максимуме (минимуме) (на рис. 1 в точке А достигается строгий максимум, в точке В - нестрогий минимум). Точки максимума и минимума называются точками экстремума. Для того чтобы функция f (x) имела Э. в некоторой точке x0, необходимо, чтобы она была непрерывна в x0 и чтобы либо f`(x0) = 0 (точка А на рис. 1), либо f`(x0) не существовала (точка С на рис. 1). Если при этом в некоторой окрестности точки x0 производная f'(x) слева от x0 положительна, а справа отрицательна, то f (x) имеет в x0 максимум; если f'(x) слева от x0 отрицательна, а справа положительна, то - минимум (первое достаточное условие Э.). Если же f'(x) не меняет знака при переходе через точку x0, то функция f (x) не имеет Э. в точке x0 (точки D, Е и F на рис. 1). Если f (x) в точке x0 имеет п последовательных производных, причём f'(x0) = f``(x0) =...= f (n-1) (x0)=0, a f (n)(x0)≠0, то при п нечётном f (x) не имеет Э. в точке x0, а при п чётном имеет минимум, если f (n) (x0) > 0, и максимум, если f (n) (x0) < 0. Э. функции не следует смешивать с наибольшим и наименьшим значениями функции (См. Наибольшее и наименьшее значения функции).

Аналогично Э. функции одного переменного определяется Э. функции нескольких переменных. Необходимым условием Э. является в этом случае обращение в нуль или же несуществование частных производных первого порядка. Например, на рис. 2 частные производные равны нулю в точке М, на рис. 3 в точке М они не существуют. Если в некоторой окрестности точки М (х0, y0) существуют и непрерывны первые и вторые частные производные функции f (x, у) и в самой точке f'x = f'y = 0,

Δ = f'' xx f'' уу > 0,

то f (x, у) в точке М имеет Э. (максимум при f''xx < 0 и минимум при f''xx > 0); Э. в точке М не существует, если Δ < 0 (в этом случае М является т. н. седловиной, или точкой минимакса, см. рис. 4).

Достаточные условия Э. функций многих переменных сводятся к положительной (или отрицательной) определённости квадратичной формы

Σni, k=1 aikΔxiΔxk

где aik - значение f''xixk в исследуемой точке. См. также Условный экстремум.

Термин "Э." употребляется также при изучении наибольших и наименьших значений функционалов в вариационном исчислении (См. Вариационное исчисление).

Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971.

Рис. 1. к ст. Экстремум.

Рис. 2. к ст. Экстремум.

Рис. 3. к ст. Экстремум.

Рис. 4. к ст. Экстремум.

ЭКСТРЕМУМ         
(от лат. extremum - крайнее), см. Максимум и минимум.
ЭКСТРЕМУМ         
[рэ], а, м.
Наибольшее и наименьшее значение функции. | Термин э. употребляется для объединения понятий максимума и минимума.

Wikipedia

Экстремум

Экстре́мум (лат. extremum — крайнее) в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).

Задачи нахождения экстремума возникают во всех областях человеческого знания: теория автоматического управления, проблемы экономики, биология, физика и т. д.

Beispiele aus Textkorpus für Экстремум
1. Где мы раздаем свои паспорта- там сразу крутой экстремум.
2. Где мы раздаем свои паспорта-там сразу крутой экстремум.
3. Сегодня мы наблюдаем пик националистической эйфории экстремум, так сказать.
4. Теперь "экстремальный". Это от латинского "экстремум", то есть крайний.
5. Это менеджеры, топ-менеджеры или владельцы бывших компаний - экстремум частных лиц.